Другое

Головной мозг

Личные качества человека и склад характера уже давно находятся под прицелом изучения ученых. Недавно Оксфордский университет оценивал уровень щедрости испытуемой группы и пришел к заключению, что данное чувство генерируется определенной областью мозга.

В эксперименте принимали участие волонтеры, которые проходили компьютерную игру. За успешно завершенные миссии волонтерам предлагалось выбрать одно из двух действий – отдать награду одному из игроков либо использовать ее в своих целях.

Во время благотворительного действия у испытуемых активизировалась передняя костная кора мозга. Выявить подобную реакцию ученым удалось благодаря сканированию волонтеров аппаратом МРТ.

Нейронная реакция наблюдалась далеко не у всех участников группы, а только у самых чутких и отзывчивых. Эксперимент проходил под руководством доктора Патрисии Локвуд, которая занимает должность профессора кафедры экспериментальной психологии.

Она сообщает о том, что участники с более развитым уровнем эмпатии быстрее совершали выбор в пользу других игроков. А реакция костной коры головного мозга была более ярко выраженной.

Прошлые исследования донной зоны мозга показали, что костная область менее активна у тех людей, которые склонны к депрессиям и биполярным расстройствам. Данное открытие станет полезным для психологического исследования человека, позволяющее лучше понять мотивы антисоциального поведения.

Ткани мозга

Головной мозг — главный отдел ЦНС. Говорить о наличии головного мозга в строгом смысле можно только применительно к позвоночным, начиная с рыб. Однако несколько вольно этот термин используют для обозначения аналогичных структур высокоорганизованных беспозвоночных — так, например, у насекомых «головным мозгом» называют иногда скопление ганглиев окологлоточного нервного кольца . При описании более примитивных организмов говорят о головных ганглиях, а не о мозге.

Вес головного мозга в процентах от массы тела составляет у современных хрящевых рыб 0,06—0,44 %, у костных рыб 0,02—0,94 %, у хвостатых земноводных 0,29—0,36 %, у бесхвостых 0,50—0,73 % . У млекопитающих относительные размеры головного мозга значительно больше: у крупных китообразных 0,3 %, у мелких китообразных — 1,7 %, у приматов 0,6—1,9 %. У человека отношение массы головного мозга к массе тела в среднем равно 2 %.

Наиболее крупные размеры имеет головной мозг млекопитающих отрядов китообразные, хоботные, приматы. Наиболее сложным и функциональным мозгом считается мозг человека разумного.

Средняя масса головного мозга у различных живых существ приведена в таблице .

ГруппаМасса мозга, г
Кашалот7800
Финвал6930
Слон4783
Косатка5620
Горбатый кит4675
Серый кит4317
Гренландский кит2738
Гринда2670
Бутылконосый дельфин1500—1600
Взрослый человек1300—1400
Морж1020—1126
Питекантроп850—1000
Верблюд762
Жираф680
Бегемот582
Морской леопард542
Лошадь532
Горилла465—540
Белый медведь498
Корова425—458
Шимпанзе420
Новорождённый человек350—400
ГруппаМасса мозга, г
Орангутан370
Калифорнийский морской лев363
Ламантин360
Тигр263,5
Лев240
Гризли234
Свинья180
Ягуар157
Овца140
Павиан137
Макак-резус90—97
Собака (бигль)72
Трубкозуб72
Бобр45
Большая белая акула34
Усатая акула-нянька32
Кошка30
Дикобраз25
Беличья обезьяна22
Сурок17
Кролик10—13
Утконос9
ГруппаМасса мозга, г
Аллигатор8,4
Белка7,6
Опоссум6
Шерстокрыл6
Муравьед4,4
Морская свинка4
Обыкновенный фазан4,0
Ёж3,35
Тупайя3
Броненосец2,5
Сова2,2
Крыса (массой 400 г)2
Серая куропатка1,9
Хомяк1,4
Прыгунчик1,3
Воробей1,0
Европейская перепёлка0,9
Черепаха0,3—0,7
Лягушка-бык0,24
Гадюка0,1
Золотая рыбка0,097
Зелёная ящерица0,08

Ткани мозга править |

Над чем мы смеемся?

Сначала вам нужно определить интеллект, очень сложную задачу, подумать об этом. Согласно самым современным определениям интеллект состоит из навыков логического мышления, решения проблем, критического мышления и адаптации. Когда мозг считается мертвым?

Центральная нервная система (ЦНС):

I. Шейные нервы.
II. Грудные нервы.
III. Поясничные нервы.
IV. Крестцовые нервы.
V. Копчиковые нервы.

1. Головной мозг.
2. Промежуточный мозг.
3. Средний мозг.
4. Мост.
5. Мозжечок.
6. Продолговатый мозг.
7. Спинной мозг.
8. Шейное утолщение.
9. Поперечное утолщение.
10. «Конский хвост»

Вес головного мозга в процентах от массы тела составляет у современных хрящевых рыб 0,06-0,44 %, у костных рыб 0,02-0,94 %, у хвостатых земноводных 0,29-0,36 %, у бесхвостых 0,50-0,73 % У млекопитающих относительные размеры головного мозга значительно больше: у крупных китообразных 0,3 %, у мелких китообразных - 1,7 %, у приматов 0,6-1,9 %. У человека отношение массы головного мозга к массе тела в среднем равно 2 %.

Смерть мозга является необратимым окончанием всей активности мозга из-за полного некроза мозговых нейронов после потери кровотока и оксигенации. У человека, умершего от мозга, нет клинических признаков функции мозга при физическом обследовании. Это не влияет на боль и отсутствие рефлексов черепных нервов. Рефлексы включают зрачковый ответ, окулоцефальный рефлекс, рефлекс роговицы, отсутствие ответа на тест калорийного рефлекса и отсутствие спонтанных респираций. Диагноз смерти мозга должен быть строгим, чтобы определить, является ли состояние необратимым.

Наиболее крупные размеры имеет головной мозг млекопитающих отрядов китообразные, хоботные, приматы. Наиболее сложным и функциональным мозгом можно считать мозг человека.

Головной мозг заключен в надежную оболочку черепа (за исключением простых организмов). Кроме того, он покрыт оболочками (лат. meninges) из соединительной ткани - твёрдой (лат. dura mater) и мягкой (лат. pia mater), между которыми расположена сосудистая, или паутинная (лат. arachnoidea) оболочка. Между оболочками и поверхностью головного и спинного мозга расположена цереброспинальная (часто её называют спинномозговая) жидкость - ликвор (лат. liquor). Цереброспинальная жидкость также содержится в желудочках головного мозга. Избыток этой жидкости называется гидроцефалией. Гидроцефалия бывает врождённой (чаще) и приобретённой.

Правовые критерии различаются, но обычно требуется проведение неврологических экзаменов двумя независимыми врачами. Если тесты показывают активность мозга, пациент может находиться в коме или вегетативном состоянии. Мозговой мозг не показывает мозговой активности. Важно различать смерть мозга и состояния, которые могут имитировать смерть мозга. Некоторые коматозные пациенты могут восстановиться, а некоторые пациенты с тяжелой необратимой неврологической дисфункцией, тем не менее, сохранят некоторые более низкие функции мозга, такие как спонтанное дыхание, несмотря на потери как коры головного мозга, так и функциональности мозга.

Головной мозг высших позвоночных организмов состоит из ряда структур: коры больших полушарий, базальных ганглиев, таламуса, мозжечка, ствола мозга. Эти структуры соединены между собой нервными волокнами (проводящие пути). Часть мозга, состоящая преимущественно из клеток, называется серым веществом, из нервных волокон - белым веществом. Белый цвет - это цвет миелина, вещества, покрывающего волокна. Демиелинизация волокон приводит к тяжелым нарушениям в головном мозге (рассеянный склероз).

Таким образом, анэнцефалия, в которой отсутствует более высокий мозг, обычно не считается смертью мозга, хотя это, безусловно, необратимое условие, при котором может быть целесообразно отказаться от жизнеобеспечения. Сегодня как юридические, так и медицинские сообщества используют «смерть мозга» как юридическое определение смерти. Используя критерии смерти от смерти, медицинское сообщество может объявить человека юридически мертвым, даже если оборудование для поддержания жизни поддерживает работу метаболических процессов организма.

Клетки мозга включают нейроны (клетки, генерирующие и передающие нервные импульсы) и глиальные клетки, выполняющие важные дополнительные функции. (Можно считать, что нейроны являются паренхимой мозга, а глиальные клетки стромой). Нейроны делятся на возбуждающие (то есть активирующие разряды других нейронов) и тормозные (препятствующие возбуждению других нейронов).

Помогают ли мозговые добавки в усилении памяти и способности мозга? По мере нашего возраста наш мозг более восприимчив к потере памяти и заболеваниям, таким как болезнь Альцгеймера. Функциональность человеческого мозга также может быть затронута из-за проблем в нервной системе или недостаточного кровоснабжения мозга. для оказания помощи мозгу.

Ваш мозг генерирует почти 25 ватт энергии, пока вы «просыпаетесь», чего достаточно, чтобы зажечь лампочку. Алкоголь влияет на мозговые процессы, ослабляя связи между нейронами. Каждый раз, когда у вас появляется новая мысль или запоминается память, между двумя или несколькими клетками мозга происходит новое соединение мозга.

Коммуникация между нейронами происходит посредством синаптической передачи. Каждый нейрон имеет длинный отросток, называемый аксоном, по которому он передает импульсы другим нейронам. Аксон разветвляется и в месте контакта с другими нейронами образует синапсы - на теле нейронов и дендритах (коротких отростках). Значительно реже встречаются аксо-аксональные и дендро-дендритические синапсы. Таким образом, один нейрон принимает сигналы от многих нейронов и в свою очередь посылает импульсы ко многим другим.

Живой мозг настолько мягкий, что вы можете его обрезать столовым ножом. Потеря кислорода всего за 5-10 минут может привести к серьезному повреждению головного мозга. Мозг может оставаться в живых в течение 4-6 минут без кислорода. Человеческий мозг содержит около 400 миль кровеносных сосудов.

Внутри мозга нет чувства боли, что объясняет, почему мозговые хирурги могут исследовать области мозга даже тогда, когда пациент бодрствует. Левая часть вашего мозга контролирует правую сторону вашего тела, и, правая сторона вашего мозга контролирует левую сторону вашего тела.

В большинстве синапсов передача сигнала осуществляется химическим путем - посредством нейромедиаторов. Медиаторы действуют на постсинаптические клетки, связываясь с мембранными рецепторами, для которых они являются специфическими лигандами. Рецепторы могут быть лиганд-зависимыми ионными каналами, их называют ещё ионотропными рецепторами, или могут быть связаны с системами внутриклеточных вторичных мессенджеров (такие рецепторы называют метаботропными). Токи ионотропных рецепторов непосредственно изменяют заряд клеточной мембраны, что ведёт к её возбуждению или торможению. Примерами ионотропных рецепторов могут служить рецепторы к ГАМК (тормозной, представляет собой хлоридный канал), или глутамату (возбуждающий, натриевый канал). Примеры метаботропных рецепторов - мускариновый рецептор к ацетилхолину, рецепторы к норадреналину, эндорфинам, серотонину. Поскольку действие ионотропных рецепторов непосредственно ведёт к торможению или возбуждению, их эффекты развиваются быстрее, чем в случае метаботропных рецепторов (1-2 миллисекунды против 50 миллисекунд - нескольких минут).

Ваша кору головного мозга примерно такая же толстая, как у депрессора для врачей, и она становится толще, когда вы учитесь больше. Вы потеряете сознание через 10 секунд после потери кровоснабжения мозга. Из всех существ на Земле у людей самый сложный мозг.

Различия в весе и размере мозга не совпадают с различиями в умственных способностях. Если вытянуть кору головного мозга будет 23 кв. М или 5 кв. В человеческом мозге около 100 миллиардов нейронов, столько же звезд в нашей галактике. Вопросы, на которые нам всем хотелось бы ответить.

Как память работает в мозгу? Как память хранится, а затем вспоминается позже, даже десятилетия спустя? Что заставляет нас мечтать и какова цель снов? В то время как мечтающий мозг имеет тенденцию составлять время, необходимое для ремонта, тем самым создавая виртуальный опыт.

Форма и размеры нейронов головного мозга очень разнообразны, в каждом его отделе разные типы клеток. Различают принципиальные нейроны, аксоны которых передают импульсы другим отделам, и интернейроны, осуществляющие коммуникацию внутри каждого отдела. Примерами принципиальных нейронов являются пирамидные клетки коры больших полушарий и клетки Пуркинье мозжечка. Примерами интернейронов являются корзиночные клетки коры.

В то время как мечтая мозг также освежает сохраненные воспоминания, решая, какие из них сохранить, а какие нет. Почему нам нужно спать и как мозг входит и поддерживает этап сна? Мы спим, чтобы восстановить поврежденные части тела и мечтать. Как мы принимаем решения, приходим к выводам и чтим наш курс по жизни?

Как у каждого из нас есть свои индивидуальные личности и черты? Как память может храниться в живой клетке или группе клеток? Проводится ли какая-либо работа по созданию компьютера с использованием живых клеток для хранения и извлечения информации, возможно, для дублирования мозга.

Активность нейронов в некоторых отделах головного мозга может модулироваться также гормонами.

До сих пор было известно, что нервные клетки восстанавливаются только у животных. Однако недавно ученые обнаружили, что в отделе мозга человека, который отвечает за обоняние, из клеток-предшественниц образуются зрелые нейроны. Однажды они смогут помочь «починить» травмированный мозг.источник не указан 15 дней

Уже более века вера стала верой в то, что люди не выполняют свой интеллектуальный потенциал. Гуру самосовершенствования, рекламодатели и, возможно, даже Альберт Эйнштейн заявили, что 90 процентов наших мозгов сидят без дела. Идея оказалась популярной и в Голливуде, когда последний фильм Люка Бессона «Люси» использовал его в качестве основного сюжетного устройства.

В фильме Сэмюэля Нормана, вымышленного невролога, которого играет Морган Фримен, говорится: «По оценкам, большинство людей используют только 10% своего мозга». Только представьте, можем ли мы получить доступ к 100 процентам. Является ли утверждение, что мы используем только 10 процентов нашего факта или вымысла?

Кровоснабжение головного мозга

Функционирование нейронов мозга требует значительных затрат энергии, которую мозг получает через сеть кровоснабжения. Головной мозг снабжается кровью из бассейна трёх крупных артерий - двух внутренних сонных артерий (лат. a. carotis interna) и основной артерии (лат. a. basilaris). В полости черепа внутренняя сонная артерия имеет продолжение в виде передней и средней мозговых артерий (лат. aa. cerebri anterior et media). Основная артерия находится на вентральной поверхности ствола мозга и образована слиянием правой и левой позвоночных артерий. Её ветвями являются задние мозговые артерии. Перечисленные три пары артерий (передняя, средняя, задняя), анастомозируя между собой, образуют артериальный (виллизиев) круг. Для этого передние мозговые артерии соединяются между собой передней соединительной артерией (лат. a. communicans anterior), а между внутренней сонной (или, иногда средней мозговой) и задней мозговыми артериями, с каждой стороны, имеется задняя соединительная артерия (лат. aa.communicans posterior). Отсутствие анастомозов между артериями становится заметным при развитии сосудистой патологии (инсультов), когда из-за отсутствия замкнутого круга кровоснабжения область поражения увеличивается. Кроме того, возможны многочисленные варианты строения (разомкнутый круг, нетипичное деление сосудов с формированием трифуркации и др.). Если активность нейронов в одном из отделов усиливается, увеличивается и кровоснабжение этой области. Регистрировать изменения функциональной активности отдельных участков головного мозга позволяют такие методы неинвазивной нейровизуализации как функциональная магнитно-резонансная томография и позитрон-эмисионная томография.

В нем, как писал профессор Джеймс, «как правило, мужчины обычно используют лишь небольшую часть своих полномочий, которыми они на самом деле обладают и которые они могут использовать в соответствующих условиях». Атлас человеческого мозга из Мичиганского государственного университета позволяет вам смотреть фильмы каждой секции функционирования человеческого мозга.

Профессор Стоух согласен с тем, что «нет правды» по 10-процентному требованию. Но он также говорит, что у мозга есть «некоторая избыточность» в нем. «Мы все еще понимаем, как работает мозг и как мы учимся, а также пластичность мозга - это увлекательно», - говорит он.

Между кровью и тканями мозга имеется гематоэнцефалический барьер, который обеспечивает избирательную проницаемость веществ, находящиихся в сосудистом русле, в церебральную ткань. В некоторых участках мозга этот барьер отсутствует (гипоталамическая область) или отличается от других частей, что связано с наличием специфических рецепторов и нейроэндокринных образований. Этот барьер защищает мозг от многих видов инфекции. В то же время, многие лекарственные препараты, эффективные в других органах, не могут проникнуть в мозг через барьер.

Функции головного мозга

Основным компонентом нервной системы в целом и мозга в частности является нейрон или нервная клетка, «клетки мозга» популярного языка. Нейрон - электрически возбуждаемая клетка, которая обрабатывает и передает информацию посредством электрохимической сигнализации. В отличие от других клеток нейроны никогда не делятся, и они также не умирают, чтобы их заменили новыми. Точно так же они обычно не могут быть заменены после потери, хотя есть несколько исключений.

Средний человеческий мозг имеет около 100 миллиардов нейронов и много больше нейроглии, которые служат для поддержки и защиты нейронов. Типичный нейрон обладает сомой, дендритами и одним аксоном. Каждый нейрон поддерживает градиент напряжения на своей мембране из-за метаболически обусловленных различий в ионах натрия, калия, хлорида и кальция внутри клетки, каждый из которых имеет различный заряд. Если напряжение изменяется значительно, генерируется электрохимический импульс, называемый потенциалом действия.

Функции мозга включают обработку сенсорной информации, поступающей от органов чувств, планирование, принятие решений, координацию, управление движениями, положительные и отрицательные эмоции, внимание, память. Мозг человека выполняет высшую функцию - мышление. Одной из важнейших функций мозга человека является восприятие и генерация речи.

Эта электрическая активность может быть измерена и отображена как волновая форма, называемая мозговой волной или мозговым ритмом. Этот импульс быстро распространяется по аксону клетки и переносится через специализированное соединение, известное как синапс соседнему нейрону, который получает его через свои пернатые дендриты. Синапс представляет собой сложный мембранный переход или зазор, используемый для передачи сигналов между клетками, поэтому эта передача известна как синаптическая связь. Хотя аксоно-дендритные синаптические связи являются нормой, возможны и другие варианты.

Основные отделы головного мозга человека :

ромбовидный (задний) мозг,
продолговатый мозг,
задний (собственно задний),
мост (содержит главным образом проекционные нервные волокна и группы нейронов, является промежуточным звеном контроля мозжечка),
мозжечок (состоит из червя и полушарий, на поверхности мозжечка нервные клетки образуют кору),
полостью ромбовидного мозга является IV желудочек (на дне его имеются отверстия, которые соединяют его с другими тремя желудочками мозга, а также с субарахноидальным пространством),
средний мозг,
четверохолмие,
полость среднего мозга - водопровод мозга (Сильвиев водопровод),
ножки мозга,
передний мозг - состоит из промежуточного и конечного мозга,
промежуточный (через этот отдел происходит переключение всей информации, которая идет из низлежащих отделов мозга в большие полушария), полостью промежуточного мозга является III желудочек,
таламус,
эпиталамус
эпифиз,
поводок,
серая полоска,
гипоталамус (центр вегетативной нервной системы),
гипофиз,
воронка гипофиза,
серый бугор,
сосцевидные тела,
конечный,
плащ (кора),
базальные ядра (стриатум),
хвостатое ядро,
чечевицеобразное ядро,
ограда,
миндалевидное тело,
«обонятельный мозг»,
обонятельная луковица (проходит обонятельный нерв),
обонятельный тракт,
полость конечного мозга - боковые (I и II желудочки).

Типичный нейрон стреляет 5-50 раз в секунду. Каждый отдельный нейрон может образовывать тысячи связей с другими нейронами таким образом, давая типичный мозг более 100 триллионов синапсов. Функционально связанные нейроны соединяются друг с другом, образуя нейронные сети. Связи между нейронами не являются статическими, хотя они меняются со временем. Чем больше сигналов посылается между двумя нейронами, тем сильнее увеличивается связь, и поэтому, с каждым новым опытом и каждым запоминающимся событием или фактом, мозг слегка перестраивает свою физическую структуру.

Поток сигналов к головному мозгу и от него осуществляется через спинной мозг, управляющий телом, и через черепномозговые нервы. Сенсорные (или афферентные) сигналы поступают от органов чувств в подкорковые (то есть предшествующие коре полушарий) ядра, затем в таламус, а оттуда в высший отдел - кору больших полушарий.

Кора состоит из двух полушарий, соединённых между собой пучком нервных волокон - мозолистым телом (corpus callosum). Левое полушарие ответственно за правую половину тела, правое - за левую. У человека правое и левое полушарие имеют разные функции.

Зрительные сигналы поступают в зрительный отдел коры (в затылочной доле), тактильные в соматосенсорную кору (в теменной доле), обонятельные - в обонятельную кору и т. д. В ассоциативных же областях коры происходит интеграция сенсорных сигналов разных типов (модальностей).

Моторные области коры (первичная моторная кора и другие области лобных долей) ответственны за регуляцию движений.

Префронтальная кора (развитая у приматов) отвечает за мыслительные функции.

Области коры взаимодействуют между собой и с подкорковыми структурами - таламусом, базальными ганглиями, ядрами ствола мозга и спинным мозгом. Каждая из этих структур, хоть и более низкая по иерархии, выполняет важную функцию, а также может действовать автономно. Так, в управлении движениями задействованы базальные ганглии, красное ядро ствола мозга, мозжечок и другие структуры, в эмоциях - амигдала, в управлении вниманием - ретикулярная формация, в краткосрочной памяти - гиппокамп.

С одной стороны, существует локализация функций в отделах головного мозга, с другой - все они соединены в единую сеть.

Мозг обладает свойством пластичности. Если поражен один из его отделов, другие отделы через некоторое время могут компенсировать его функцию. Пластичность мозга играет роль и в обучении новым навыкам.

Одним из старейших методов исследования мозга является методика аблаций, которая состоит в том, что один из отделов мозга удаляется, и ученые наблюдают за изменениями, к которым приводит такая операция.

Не всякую область мозга можно удалить, не убив организм. Так, многие отделы ствола мозга ответственны за жизненно важные функции, такие, как дыхание, и их поражение может вызвать немедленную смерть. Тем не менее, поражение многих отделов, хотя и отражается на жизнеспособности организма, несмертельно. Это, например, относится к областям коры больших полушарий. Обширный инсульт вызывает паралич или потерю речи, но организм продолжает жить. Вегетативное состояние, при котором большая часть мозга мертва, можно поддерживать за счет искусственного питания.

Исследования с применением аблаций имеют давнюю историю и продолжаются в настоящее время. Если ученые прошлого удаляли области мозга хирургическим путем, то современные исследователи используют токсические вещества, избирательно поражающие ткани мозга (например, клетки в определённой области, но не проходящие через неё нервные волокна).

После удаления отдела мозга какие-то функции теряются, а какие-то сохраняются. Например, кошка, мозг которой рассечён выше таламуса, сохраняет многие позные реакции и спинномозговые рефлексы. Животное, мозг которого рассечён на уровне ствола мозга (децеребрированное), поддерживает тонус мышц-разгибателей, но утрачивает позные рефлексы.

Проводятся наблюдения и за людьми с поражениями мозговых структур. Так, богатую информацию для исследователей дали случаи огнестрельных ранений головы во время Второй мировой войны. Также проводятся исследования больных, поражённых инсультом, и с поражениями мозга в результате травмы.

Электрофизиологи регистрируют электрическую активность мозга - с помощью тонких электродов, позволяющих записывать разряды отдельных нейронов, или с помощью электроэнцефалографии (методики отведения потенциалов мозга с поверхности головы).

Тонкий электрод может быть сделан из металла (покрытого изоляционным материалом, обнажающим лишь острый кончик) или из стекла. Стеклянный электрод представляет собой тонкую трубочку, заполненную внутри солевым раствором. Электрод может быть настолько тонок, что проникает внутрь клетки и позволяет записывать внутриклеточные потенциалы. Другой способ регистрации активности нейронов - внеклеточный.

В некоторых случаях тонкие электроды (от одного до несколько сотен) вживляются в мозг, и исследователи регистрируют активность продолжительное время. В других случаях электрод вводится в мозг только на время эксперимента, а по окончании записи извлекается.

С помощью тонкого электрода можно регистрировать как активность отдельных нейронов, так и локальные потенциалы (local field potentials), образующиеся в результате активности многих сотен нейронов. С помощью ЭЭГ электродов, а также поверхностных электродов, накладываемых непосредственно на мозг, можно регистрировать только глобальную активность большого количества нейронов. Полагают, что регистрируемая таким образом активность складывается как из нейронных потенциалов действия (то есть нейронных импульсов), так и подпороговых деполяризаций и гиперполяризаций.

При анализе потенциалов мозга часто производят их спектральный анализ, причём разные компоненты спектра имеют разные названия: дельта (0,5-4 Гц), тета 1 (4-6 Гц), тета 2 (6-8 Гц), альфа (8-13 Гц), бета 1 (13-20 Гц), бета 2 (20-40 Гц), гамма-волны (включает частоту бета 2 ритма и выше).

Одним из методов изучения функций мозга является электрическая стимуляция отдельных областей. С помощью этого метода был, например, исследован «моторный гомункулус» - было показано, что, стимулируя определенные точки в моторной коре, можно вызвать движение руки, стимулируя другие точки - движения ног и т. д. Полученную таким образом карту и называют гомункулусом. Разные части тела представлены различающимися по размеру участками коры мозга. Поэтому у гомункулуса большое лицо, большие пальцы и ладони, но маленькое туловище и ноги.

Если же стимулировать сенсорные области мозга, то можно вызвать ощущения. Это было показано как на человеке (в знаменитых опытах Пенфилда), так и на животных.

В настоящее время для стимуляции мозга широко используется неинвазивный метод фокальной магнитной стимуляции. Проблема с этим методом состоит в том, что он активирует довольно большие участки мозга, а в некоторых случаях требуется стимулировать локальные участки.

Применяется электрическая стимуляция и в медицине - от электрошока, показанного во многих кинофильмах об ужасах психиатрических клиник, до стимуляции структур в глубине мозга, ставшей популярным методом лечения болезни Паркинсона.

Для исследования анатомических структур головного мозга применяются рентгеновская КТ и МРТ. Также при анатомо-функциональных исследованиях головного мозга применяются ПЭТ, однофотонная эмиссионная компьютерная томография (ОФЭКТ), функциональная МРТ. Возможна визуализация структур головного мозга методом ультразвуковой диагностики (УЗИ) при наличии ультразвукового «окна» - дефекта черепных костей, например, большой родничок у детей раннего возраста.

В эпоху современных технологий человек вряд ли задумывается над тем, что обладает куда более совершенным инструментом, чем многочисленные компьютеры, смартфоны и другие чудеса техники. Мозг, по праву, является одним из самых загадочных и плохо изученных органов человеческого тела. В этой статье собраны наиболее интересные факты о мозге человека.

Наша память

Ученые только начинают подбираться к разгадке тайны наших воспоминаний. Почему мы что-то запоминаем хорошо, а другое плохо? Используя современные технологии, ученый мир выяснил, что у человека есть обычные воспоминания и ложные. И оба эти вида воспоминаний заставляют быть активным одинаковые участки мозга.

Поэтому, нельзя сказать о том, что в памяти человека самую большую роль играет только гиппокамп (участвует в формирования эмоций, консолидации памяти), как это предполагали ученые раньше. Да, он, безусловно, имеет большое значение, но не исключительное. При исследованиях механизмов памяти, ученые просят испытуемых вспоминать ситуацию в контексте, для того, чтобы отличить ложные и обычные воспоминания. Эти факты о мозге человека до сих пор не до конца изучены.

Фантомное ощущение

Большой процент людей, у которых ампутирована часть тела, ощущают тепло, боль или давление в несуществующей конечности. Ученые так и не пришли к единому выводу, которое бы объяснило это явление. Одни говорят о том, что нервные окончания, которые вели в ампутированную конечность, осуществляют новые связи и посылают туда сигналы, как будто она на месте. Другие предполагают, что в мозгу человека есть память обо всем организме, и поэтому он работает с конечностью и после ее потери.

Способность к восстановлению утраченных функций

Мозг человека обладает ещё одной удивительной способностью — умением восстанавливать функции, которые были утрачены. В том случае, если травма произошла в раннем возрасте и были повреждены важные участки коры головного мозга, функции этих отделов в большинстве случаев переносятся на другие участки. Конечно, восстановление происходит постепенно и не всегда полностью осуществляется. Тем не менее, эти факты о человеческом мозге свидетельствует о том, что мозг – единая система, все элементы которой взаимосвязаны.

Мозг никогда не отдыхает

Наш мозг никогда не отдыхает, даже когда мы спим, мозг продолжает активно трудиться. Существуют разные интересные теории о том, откуда появляются наши сны. Одна из теорий говорит о том, что наш мозг во сне укрепляет воспоминания, обрабатывает полученную за день информацию. А вторая теория делает предположение о том, что наш мозг во сне активизирует разнообразные каналы и проверяет связи. Ученые со всего мира до сих пор не ведают, откуда берутся сны у человека. Установили только тот факт, что сны приходят всегда во время так называемой «фазы быстрого сна».

Необходим ли нам сон?

Почти треть своей жизни мы проводим во сне. Спят люди, животные, насекомые. Достоверно не известно, зачем нам нужен сон. Ученые могут лишь предполагать. Выяснили, что для жизни млекопитающих сон очень важен. Ведь, если на долгое время лишать сна, то это может привести к различным расстройствам здоровья, и даже к смерти.

По мнению ученых, в долгой фазе сна человек отдыхает, запасается энергией, так как мозг в это время почти не проявляет активности. А в быстрой фазе мозг обрабатывает воспоминания, полученные человеком за день, и переносит эти воспоминания из кратковременной в долговременную память. Однако ученые так и не смогли объяснить тот факт, почему наши сны так редко связаны с нашими воспоминаниями?

Мозг любит тренировки

Физические тренировки помогают держать мозг в тонусе. Регулярная спортивная нагрузка способствует увеличению количества капиляров в мозгу, что соответсвенно улучшает доступ кислорода и глюкозы. Достаточно регулярных занятий по 30 минут 2-3 раза в неделю.

Интеллектуальные тренировки также полезны. «Живой компьютер» поддается развитию в любом возрасте. Чем больше его нагружать сложными задачками, тем «умнее» он становится. Так что не ленитесь «прокачивать мозги» — это избавит вас от старческого слабоумия и психических расстройств.

Два полушария

Многие знают, что мозг человека состоит из двух полушарий, при этом мало кому известно о том, что функции правого и левого полушария различаются.

К слову сказать, левое полушарие у женщин, как правило, больше, чем у мужчин. Это научно обосновывает тот факт, что женщины более успешны в гуманитарных дисциплинах, а мужчины в технических и математических.

Помню — не помню

Не менее интересные факты о головном мозге связаны с памятью, вернее с ее потерей. Большинству людей известно о таком явлении, как амнезия. Оно часто упоминается в художественной литературе, кино, сериалах. Немногие знают о том, что амнезия бывает разной. Чаще всего она возникает после какого-либо травмирующего воздействия, будь то черепно-мозговая травма, интоксикация или опухоль, при этом человек не помнит период после воздействия.

Тем не менее, амнезия может затрагивать период до воздействия, это тот случай, когда больной забывает все факты из своей жизни до травмы. Особое место занимают амнезии, связанные с аффектами, сильными эмоциональными состояниями, когда человек забывает какое-либо травмирующее событие, неприятное происшествие из собственной жизни.

Кроме амнезий, существуют и другие нарушения памяти, например, гипермнезия, т.е. усиление памяти,часто сопровождающееся поразительными способностями к арифметическому счёту. Также существует такое явление, как гипомнезия, т.е. ухудшение или ослабление памяти.

Евгений Шевченко запись закреплена
Евгений Шевченко запись закреплена

Головной мозг человека:
1. Полушарие большого мозга (конечный мозг)
2. Таламус (промежуточный мозг)
3. Гипоталамус (промежуточный мозг)
4. Средний мозг
Показать полностью…
5. Мост
6. Мозжечок
7. Продолговатый мозг
8. Спинной мозг
Головно́й мозг (лат. cerebrum, др.-греч. ἐγκέφαλος) — главный орган центральной нервной системы подавляющего большинства хордовых, её головной конец, у позвоночных находится внутри черепа. В анатомической номенклатуре позвоночных, в том числе человека, мозг в целом чаще всего обозначается как encephalon — латинизированная форма греческого слова, изначально латинское cerebrum стало синонимом большого мозга (telencephalon).

Головной мозг состоит из большого числа нейронов, связанных между собой синаптическими связями. Взаимодействуя посредством этих связей, нейроны формируют сложные электрические импульсы, которые контролируют деятельность всего организма.

Несмотря на значительный прогресс в изучении головного мозга в последние годы, многое в его работе до сих пор остаётся загадкой. Функционирование отдельных клеток достаточно хорошо объяснено, однако понимание того, как в результате взаимодействия тысяч и миллионов нейронов мозг функционирует как целое, доступно лишь в очень упрощённом виде и требует дальнейших глубоких исследований.

См. также: Головной мозг человека

Головной мозг человека (фиксированный в формалине)
Головной мозг — главный отдел ЦНС. Говорить о наличии головного мозга в строгом смысле можно только применительно к позвоночным, начиная с рыб. Однако несколько вольно этот термин используют для обозначения аналогичных структур высокоорганизованных беспозвоночных — так, например, у насекомых «головным мозгом» называют иногда скопление ганглиев окологлоточного нервного кольца. При описании более примитивных организмов говорят о головных ганглиях, а не о мозге.

Вес головного мозга в процентах от массы тела составляет у современных хрящевых рыб 0,06—0,44 %, у костных рыб 0,02—0,94 %, у хвостатых земноводных 0,29—0,36 %, у бесхвостых 0,50—0,73 %. У млекопитающих относительные размеры головного мозга значительно больше: у крупных китообразных 0,3 %, у мелких китообразных — 1,7 %, у приматов 0,6—1,9 %. У человека отношение массы головного мозга к массе тела в среднем равно 2 %.

Наиболее крупные размеры имеет головной мозг млекопитающих отрядов китообразные, хоботные, приматы. Наиболее сложным и функциональным мозгом считается мозг человека разумного.

Ткани мозга Править

Головной мозг заключен в прочную оболочку черепа (за исключением простых организмов). Кроме того, он покрыт оболочками (лат. meninges) из соединительной ткани — твёрдой (лат. dura mater) и мягкой (лат. pia mater), между которыми расположена сосудистая, или паутинная (лат. arachnoidea) оболочка. Между оболочками и поверхностью головного и спинного мозга расположена цереброспинальная (часто её называют спинномозговая) жидкость — ликвор (лат. liquor). Цереброспинальная жидкость также содержится в желудочках головного мозга. Избыток этой жидкости называется гидроцефалией. Гидроцефалия бывает врождённой (чаще) и приобретённой.

Головной мозг высших позвоночных организмов состоит из ряда структур: коры больших полушарий, базальных ганглиев, таламуса, мозжечка, ствола мозга. Эти структуры соединены между собой нервными волокнами (проводящие пути). Часть мозга, состоящая преимущественно из клеток, называется серым веществом, из нервных волокон — белым веществом. Белый цвет — это цвет миелина, вещества, покрывающего волокна. Демиелинизация волокон приводит к тяжелым нарушениям в головном мозге (рассеянный склероз).

Клетки мозга Править

Клетки мозга включают нейроны (клетки, генерирующие и передающие нервные импульсы) и глиальные клетки, выполняющие важные дополнительные функции. (Можно считать, что нейроны являются паренхимой мозга, а глиальные клетки – стромой). Различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Коммуникация между нейронами происходит посредством синаптической передачи. Каждый нейрон имеет длинный отросток, называемый аксоном, по которому он передает импульсы другим нейронам. Аксон разветвляется и в месте контакта с другими нейронами образует синапсы — на теле нейронов и дендритах (коротких отростках). Значительно реже встречаются аксо-аксональные и дендро-дендритические синапсы. Таким образом, один нейрон принимает сигналы от многих нейронов и, в свою очередь, посылает импульсы ко многим другим

В большинстве синапсов передача сигнала осуществляется химическим путем — посредством нейромедиаторов. Медиаторы действуют на постсинаптические клетки, связываясь с мембранными рецепторами, для которых они являются специфическими лигандами. Рецепторы могут быть лиганд-зависимыми ионными каналами, их называют ещё ионотропными рецепторами, или могут быть связаны с системами внутриклеточных вторичных посредников (такие рецепторы называют метаботропными). Токи ионотропных рецепторов непосредственно изменяют заряд клеточной мембраны, что ведёт к её возбуждению или торможению. Примерами ионотропных рецепторов могут служить рецепторы к ГАМК (тормозной, представляет собой хлоридный канал), или глутамату (возбуждающий, натриевый канал). Примеры метаботропных рецепторов — мускариновый рецептор к ацетилхолину, рецепторы к норадреналину, эндорфинам, серотонину. Поскольку действие ионотропных рецепторов непосредственно ведёт к торможению или возбуждению, их эффекты развиваются быстрее, чем в случае метаботропных рецепторов (1—2 миллисекунды против 50 миллисекунд — нескольких минут).

Форма и размеры нейронов головного мозга очень разнообразны, в каждом его отделе разные типы клеток. Различают принципиальные нейроны, аксоны которых передают импульсы другим отделам, и интернейроны, осуществляющие коммуникацию внутри каждого отдела. Примерами принципиальных нейронов являются пирамидные клетки коры больших полушарий и клетки Пуркинье мозжечка. Примерами интернейронов являются корзиночные клетки коры.

Активность нейронов в некоторых отделах головного мозга может модулироваться также гормонами.

До сих пор было известно, что нервные клетки восстанавливаются только у животных. Однако недавно ученые обнаружили, что в отделе мозга человека, который отвечает за обоняние, из клеток-предшественниц образуются зрелые нейроны. Однажды они смогут помочь «починить» травмированный мозг. Стволовые клетки, находящиеся в мозге, перестают делиться, происходит реактивация некоторых участков хромосом, начинают формироваться специфические для нейронов структуры и соединения. С этого момента клетку можно считать полноценным нейроном. На сегодняшний момент известны только 2 области активного прироста нейронов. Одна из них — зона памяти. В другую входит зона мозга, ответственная за движения. Этим объясняется частичное и полное восстановление со временем соответствующих функций после повреждения данного участка мозга.

Смотрите видео: Головной мозг. Строение и функции. Видеоурок по биологии 8 класс (October 2019).